您的位置首页生活百科

1+1为什么等于二?

1+1为什么等于二?

因为人们知道,世界上存在三类不同的事物。一类是完全满足可加性的量。比如质量,容器里的气体总质量总是等于每个气体分子质量之和。对于这些量,1+1=2是完全成立的。

第二类是仅仅部分满足可加性的的量。比如温度,如果把两个容器的气体合并在一起,则合并后气体的温度就是原来气体各自温度的加权平均(这是一种广义的“相加”)。但这里就有一个问题:温度这个量不是完全满足可加性的,因为单个分子没有温度。

数学上,还有另一个非常有名的“(1+1)”,它就是著名的哥德巴赫猜想。尽管听起来很神秘,但它的题面并不费解,只要具备小学三年级的数学水平就就能理解其含义。原来,这是18世纪时,德国数学家哥德巴赫偶然发现,每个不小于6的偶数都是两个奇素数之和。例如3+3=6, 11+13=24。

皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。

皮亚诺的这五条公理用非形式化的方法叙述如下:

1、0是自然数。

2、每一个确定的自然数 a,都有一个确定的后继数x' ,x' 也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等)。

3、如果b、c都是自然数a的后继数,那么b = c。

4、0不是任何自然数的后继数。

5、设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。

(这条公理也叫归纳公理,保证了数学归纳法的正确性。)

更正式的定义如下: 一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个集合,x为X中一个元素,f是X到自身的映射,且符合以下条件:

x不在f的值域内。

f为一个单射。

若x∈A 且 " a∈A 蕴涵 f(a)∈A",则A=X。