等差数列Sn求和公式:
设首项为
, 末项为
, 项数为
, 公差为
, 前
项和为
, 则有:
①
;
②
;
③
;
④
,
其中
当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数
的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
等比数列Sn求和公式:
Sn=n×a1 (q=1)
Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
S∞=a1/(1-q) (n-> ∞)(|q|<1)
(q为公比,n为项数)
等比数列求和公式推导
(1)Sn=a1+a2+a3+...+an(公比为q)
(2)q*Sn=a1*q+a2*q+a3*q+...+an*q
=a2+a3+a4+...+a(n+1)
(3)Sn-q*Sn=a1-a(n+1)
(4)(1-q)Sn=a1-a1*q^n
(5)Sn=(a1-a1*q^n)/(1-q)
(6)Sn=(a1-an*q)/(1-q)
(7)Sn=a1(1-q^n)/(1-q)
来自百度百科