您的位置首页百科知识

什么是复数的模

什么是复数的模

设复数z=a+bi(a,b∈R),它的几何意义是复平面上一点(a,b)到原点的距离。

运算法则:

| z1·z2| = |z1|·|z2|

┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|

| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。

扩展资料:

运算法则

1、加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

2、乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

设复数z=a+bi(a,b∈R),则复数z的模|z|=

,它的几何意义是复平面上一点(a,b)到原点的距离。

运算法则:

| z1·z2| = |z1|·|z2|

┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|

| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。

扩展资料

运算法则

1、加法法则

复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

2、乘法法则

复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

3、除法法则

复数除法定义:满足

的复数

叫复数a+bi除以复数c+di的商。

运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,

4、开方法则

若zn=r(cosθ+isinθ),则

(k=0,1,2,3…n-1)

参考资料:

参考资料:

复数的模:将复数的实部与虚部的平方和的正的平方根的值,记作∣z∣.

即对于复数z=a+bi,它的模:∣z∣=√(a^2+b^2)

复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。

复数x被定义为二元有序实数对(a,b),记为z=a+bi,这里a和b是实数,i是虚数单位。在复数a+bi中,a=Re(z)称为实部,b=Im(z)称为虚部。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数的四则运算规定为:

加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;

减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;

乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

除法法则:(a+bi)÷(c+di)=[(ac+bd)/(c²+d²)]+[(bc-ad)/(c²+d²)]i.

设复数z=a+bi(a,b都是实数) 则它的模∣z∣=√(a^2+b^2),可见,模一定是实数,不可能是虚数!

(1)∣z∣≧0

(2)复数模的平方等于这个复数与它的共轭复数的积。

复数模的运算法则

| z1·z2| = |z1|·|z2|

┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|

| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线

(一)数学名词。由实数部分和虚数部分所组成的数,形如a+bi 。其中a、b为实数,i 为“虚数单位”,i 的平方等于-1。a、b分别叫做复数a+bi的实部和虚部。当b=0时,a+bi=a 为实数;当b≠0时,a+bi 又称虚数;当b≠0、a=0时,bi 称为纯虚数。实数和虚数都是复数的子集。如同实数可以在数轴上表示一样,复数可以在平面上表示,这种表示通常被称为“阿干图示法”,以纪念瑞士数学家阿干(J.R.Argand,1768—1822)。复数x+yi以坐标黑点(x,y)来表示。表示复数的平面称为“复数平面”。如果两个复数的实部相等,虚部互为相反数,那么这两个复数称为共轭复数。

(二)指在英语中与单数相对,两个及两个以上的可数名词。 例如

book, books

door, doors

tomato, tomatoes

photo, photos

phenomenon, phenomena