北师大版五年级上册数学教案(精选11篇)
作为一名辛苦耕耘的教育工作者,总归要编写教案,教案是备课向课堂教学转化的关节点。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的北师大版五年级上册数学教案,仅供参考,希望能够帮助到大家。
教材分析:
本节教材是北师大版五年级上册第四单元第一课时的内容,它是在前面已经学习了分数的认识、简单的同分母分数加减法的基础上教学的,它将为后面的分数的混合运算打下基础。
教学目标:
1、通过直观操作活动,理解异分母分数加减法的原理。
2、能正确计算异分母分数的加减法。
3、引导学生从现实体验出发,激发学生兴趣,学会合作,与人分享收获,并感受教学与生活的联系。
教学重点:
理解异分母分数的加减法的原理,能正确计算异分母分数的加减法。
教学难点:
理解异分母分数加减法的算理。
教法学法:
为了讲清重点,突破难点,使学生达到本节课制定的目标,再从教法、学法上谈一谈。
教学教法:
我会坚持以学生为主体,教师为主导的原则,根据学生的.心理发展规律,采用参与度高的学导式讨论教学法,让学生探究体验、参与合作、互动讨论。
教学学法:
引导学生用动手实践、自主探究、合作交流的学习方式,让学生在体验中感悟情感、态度、价值观,在活动中归纳知识,在参与中培养能力,在合作中学会学习。
教学过程:
一、创设情境,生成问题。
出示课本上的情境图(小明和小红在手工课上折纸鹤)让学生观察,你发现了什么能提出什么问题
结合学生提问,解决第一个问题:一共用了这张纸的几分之几
引出算式1/2+1/4(板书算式)
此环节抓住切入点生成本节课的问题,分母不相同的分数相加怎样计算让学生体会异分母分数加减计算的必要性,在生活中确实需要。从而产生强烈的问题意识,使学生因猜想而紧张的沉思,从而达到风起云生的效果。
二、探索交流、解决问题。
(一)解决异分母分数加法
1、独立思考——投石问路
在提出1/2+1/4得多少后,让学生独立思考,让全体学生在独立思考的基础上自己的通过画图、折纸、探索计算的算法。
2、合作交流——曲径通幽
算完后在小组内说一说自己的想法,并展示自己的操作过程。
3、汇报交流——水到渠成
小组说完后,哪组的同学起来汇报一下你们小组的想法其他还有别的想法吗
引导学生说出计算法,可能会有以下几种请况
1/2+1/4=1/6
1/2+1/4=2/6
1/2+1/4=2/4+1/4=3/4
不管是哪这种想法,我都不会急于表态,而是把问题抛回去:请同学们想想,你同意那种意见为什么
重点引导学生不仅说出得多少,更应结合图形、画图说明为什么先通分的道理,进一步加深对算理的理解。
(二)异分母分数减法
出示提出的问题:你能计算小红比小明多用了这张纸的几分之几吗学生独立探索异分母分数的减法。然后出示试一试两题,让学生独立解答,集体订正。
(三)小结计算方法
观察算式,小组讨论,怎样计算分母不同的分数的加减法
让学生思考、交流、汇报,师生共同小结优化,重点引导学生说出算法——先通分、化成分母相同的分数,再加减。你还有什么要提醒同学的吗引导学生总结提醒大家注意的事项。
此环节抓住问题的的着力点讨论,让学生探究有实效,探索异分母分数加减的方法,汇报交流抓住知识的突破点,以求达到由“投石问路——曲径通幽——水到渠成”的效果。
三、巩固应用,内化提高。
我会设计基本练习(课本练一练1—3题)、提高练习(练一练第4题)、综合练习(解决生活中的问题)让学生先看清题意,再独立思考,自主计算,完成后集体订正,订正时关注有什么不一样的或是不对的
此环节抓住盲点练习,让学生自觉运用所学知识解决问题。
四、回顾整理,反思提升
这节课你有什么收获引导学生说出学到的知识,还有情感体验。
此环节抓住新知识增长点,把学到的知识转化为学生的素质,更深刻地运用数学思考解决问题。
[教学内容]
除得尽吗?(第15~16页)
[教学目标]
1:通过计算蜘蛛和蜗牛每份爬行多少米,发现余数和商的特点,知道什么是循环小数。
2:会用四舍五入法对循环小数取近似值。
[教学重点]
认识循环小数,会用四舍五入法对循环小数取近似值。
[教学难点]
会正确表示循环小数,掌握余数和商的特点以及它们和被除数、除数之间的关系。
[教学过程]
一、创设情境,激发兴趣
1、师:动物王国要举行一场有意义的爬行比赛,蜘蛛和蜗牛正在奋力的爬行着,请同学们认真观察主题图,从中找出有用的.数学信息。学生找数学信息:蜘蛛3分爬行73米,蜗牛11分钟爬行9.4米。
2、师:同学们观察得很仔细,根据这些信息你能提出哪些数学问题?
生1:蜘蛛平均每分钟爬行多少米?
生2:蜗牛平均每分钟爬行多少米?
生3:谁爬得快?
师:下面我们就来研究同学们所提出的问题。
二、探索新知
1、估一估,谁爬得快一些?
学生可能会汇报的几种情况:蜘蛛只用了3分钟就爬了73米,而蜗牛用了11分钟才爬了9.4米,蜘蛛用了较短的时间爬了较远的路程,而蜗牛用时较长路程却较短,所以蜘蛛爬得快;
根据路程÷时间=速度,可以对比蜗牛与蜘蛛爬行的速度,73÷3大约等于二十几,而9.4÷11还不到1,所以很明显蜘蛛爬得快
2、师:蜘蛛和蜗牛每分钟爬行的速度到底是多少呢?我们来算一算。
同桌比赛:一人计算蜘蛛的速度,一人计算蜗牛的速度,看谁算得又准又快。
3、学生会发现怎么除也除不尽,小组合作讨论:除得尽吗?余数、商各有什么特点?它们之间有什么联系?
引导学生发现:余数和商重复出现,总也除不尽。因为余数重复出现所以商也会重复出现,继续除下去总也除不尽,商的小数部分有时一个数字重复出现,有时几个数字重复出现。
4、师介绍:像24.333,0.85454这样从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫作循环小数。
5、介绍写法。
在国际上有一种通用的表示循环小数的简便方法,那就是在循环小数中,如果是一个数字重复出现,就在这个数字上面点一个点;如果是几个数字重复出现,就在首尾两个数字上面各点一个点。
6、试着将下面的循环小数用这种方法表示出来。24.333?,0.85454?
7、求循环小数的近似值。
根据需要,可以用四舍五入的方法对循环小数取近似值。试着将24.333,0.85454保留两位小数。
三、巩固练习
1、完成教材第15页计算下面各题,并说一说哪几题的商是循环小数。
2、完成教材第16页练一练第1、2、4题。
[课堂总结]
本节课你有什么收获?
[板书设计]
除得尽吗?
蜘蛛平均每分钟爬行多少米?
73÷3=24.333
蜗牛平均每分钟爬行多少米?
9.4÷11=0.85454
教学内容:
教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学准备:
幻灯片、课件。
教学过程
一、情境导入
利用课件显示课本第7页四幅美丽的图案,配音乐,让学生欣赏。
二、学习新课
(一)图案欣赏:
1、伴着动听的音乐,我们欣赏了这四幅美丽的图案,你有什么感受?
2、让学生尽情发表自己的感受。
(二)说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的'?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、巩固练习
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、交流并欣赏。说一说好在哪里?
四、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
五、布置作业:
教材第9页第5题。
教学目标:
使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答"求一个数是另一个数的几分之几"的应用题.
教学重点:
名数之间的互化.
教学难点:
名数之间的互化的实质理解.
教学课型:
新授课
教具准备:
课件
教学过程:
一、铺垫复习,导入新知
1、用分数表示下面各式的`商.[课件1]
5÷6 14÷25 12÷12 18÷35
2、在括号里填上适当的数或字母.[课件2]
12÷35=()/() ()÷()=4/7
()÷()=a/b 8÷()=()/9
()÷17=7/() 1÷()=()/d
3、把5个饼分给9孩子吃,每个孩子分得多少个[课件3]
4、小新家养鸡30只,养鸭10只.养的鸡是鸭的几倍
5、填空.[课件4]
30分米=()米180分=()小时
二、变式类推,深化理解
1、教学P91 .例4: (1)3分米是几分之几米
(2)17分是几分之几时
思考:A、这两题与复习题有什么区别有什么相同
B、第(1)题要把分米数改写成米数应该怎么办怎样计算
板书: 3÷10=3/10(米)
C、第(2)小题是要将什么改写成什么怎样求得
板书: 17÷60=17/60(时)
P91 .做一做
2、教学P92 .例5:小新家养鹅7只,养鸭10只.养的鹅是鸭的几分之几
(1)提问:A、用谁作标准该怎样计算
B、与复习题对比,有哪些不同点和相同点
(2)归纳.
求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称.
P92 .做一做
习前提问:说说用什么作标准数
三、加强练习,深化概念
1、P93 .4
§要求说说题目的思路和单位之间的进率.
2、P93 .6
提问:这两个问题中的标准量相同吗请说说标准量分别是什么
3、P93 .7
四、全课小结,抽象概括
1、本节课所学的两个内容分别是什么
2、你还有问题要问吗
五、家庭作业
P93 .5,8
单元教学目标:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教学内容
小数乘以整数 课型 新授课
教学目标
1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点
小数乘以整数的算理及计算方法。
教学难点
确定小数乘以整数的积的小数点位置的方法。
教具准备
放大的'复习题表格一张(投影)。
教学过程
一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍.)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3. 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3. 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
①先把小数扩大成整数;
②按整数乘法的法则算出积;
③再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
教学内容:
教材P5~6例3、例4及练习二第1、9题。
教学目标:
知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。
过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:
在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:
让学生自主探究小数乘法的计算方法并正确地进行笔算。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程
一、复习引入
1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3
口算后提问:从14×3和1.4×3的口算中,你有什么发现?
2.列竖式计算。26×7 1.36×12 30.8×25
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。出示教材第5页例3的主题情境图。
师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)
师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共需要多少千克油漆,需要先求出宣传栏的面积。
师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:×0.8
生2:也可以把它们可作整数来计算(下左)。
师:那么如何求一共需要多少油漆呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)
所以一共需要1.728千克油漆。
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的两个因数中一共有几位小数?积呢?
生:两个因数中一共有2位小数,积也有2位小数。
2.探究小数乘法的计算方法。完成P6例4上面的填空。
(l)组织学生尝试完成教材第5页的“做一做”。
(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
(3)教学例4。 0.56×0.04
师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?
学生讨论,教师板书。
师:乘得的积的'小数位数不够时,要在前面用0补足,再点小数点。
师:观察黑板上各题,小组讨论。(出示讨论提纲。)
讨论提纲:①小数乘小数,我们首先怎样想?
(把两个因数的小数点去掉,转化为整数乘法。)
②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)
③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?
(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)
3.根据上面的分析,想想小数乘法是怎样计算的?
学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。
生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。
教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.4 0.08×0.9 7.3×0.06
9.1×0. 03 0.25×0.23 45.9×3.5
提问:怎样判断积有几位小数?
2.用竖式计算。(教材第6页“做一做”的第1题)
提问:你是怎样计算0.29×0.07的?
3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。
师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。
师:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(O除外)乘小于1的数,积比原来的数小。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
作业:教材第8~10页练习二第1、9题。
教学目标:
1、初步体会整数乘法的运算定律在小数乘法中仍然适用。
2、能运用这些运算定律使计算简便。
3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。
教学重点:
学生通过观察能找出正确的简便算法。
教学难点:
学生通过观察能找出正确的.简便算法。
教学准备:
媒体等
教学过程:
一、复习准备:
1、口算: 5× = × = 125×= ×= ×= ×80= ×20= 250×= ×=
2、简便计算:
32×25×125 79×21+21×21
二、探究新知:
1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?
2、出示:观察并计算,下面每组中的两个算式有什么关系:
×○× (×)×○×(×)
×+×○(+)× 3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。
4、揭题:整数乘法运算定律推广到小数 5、你能用这些运算定律来巧算吗? ×× ×+× (+)×4
a. 让学生独立思考完成
b. 让学生汇报:你应用哪条乘法运算定律进行简便计算的。
三、分层练习:
1、将一个数分解成两个数的积或两个数的差:
=8× () =0.8× () =× () =10- () =100- () =1- ()
2、下面各题怎样计算比较简便? ×25×125 ×99+ 64× 3、判断下面各题是否正确,并说说理由。(书P17—练一练)
4、你认为怎样算简便?×
四、课堂总结:
整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。
五、思考题: 判断是否正确(机动)
× + ×38 = ×( + ) = ×10 = 83
六、板书:
整数乘法运算定律推广到小数 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b+c)=a×b+a×c
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:
感受用正数和负数来表示一些相反意义的量
学生认知基础:
生活中见到过负数。
时间分配
学20、讲10、练10
教法学法
自主探索法,练习法,讲授法。
教学准备
第一课时
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
第二课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
课后反思
得:
首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的.数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。
失:
《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。
由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。
教学目标:
1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。
2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。
教学重点:
能够熟练地理解字母表示数,数量关系。
教学难点:
能够熟练并正确地解简易方程。
教学过程:
一、揭示课题
我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。
二、复习用字母表示数
1、用含有字母的式子表示。
(1)求路程的数量关系。
(2)乘法交换律。
(3)长方形的面积计算公式。
让学生写出字母式子,同时指名一人板演。指名学生说说每个式子表示的意思。提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?
2、做“练一练”第x题。
让学生做在课本上。指名口答结果,老师板书,结合提问怎样求式子的值。
3、做练习第x题。
指名学生口答。选择两道说说是怎样想的。
三、复习解简易方程
1、复习方程概念。
提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的.什么?指出:字母还可以表示等式里的未知数。含有未知数的等式就叫方程。(板书定义)
2、做“练一练”第x题。
小黑板出示,学生判断并说明理由。提问:5x—4x=2里未知数x等于几,x=2是这个方程的什么?7×0.3+x=2.5里未知数x等于几?x=0.4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?
3、解简易方程。
(1)做“练一练”第x题第一组题。
指名两人板演,其余学生做在练习本上。集体订正:解第一个方程是怎样想的,检查解方程时每一步依据什么做的。第二个方程与第一个有什么不同,解方程时有什么不同?指出:解方程时先看清题目,根据运算顺序,能先算的就先算出来。不能算的就看做一个未知数。我们现在解方程是一般根据加减法之间、乘除法之间的关系来进行的。(结合板书:解方程:能先算的要先算,再按各部分关系来解)追问:这两题可以怎样检验方程的解对不对?
(2)做“练一练”第x题后两组题。
指名两人板演,其余学生分两组,分别做其中的一组题。集体订正,并让学生说说每组两题有什么不同,解方程的过程有什么不同。强调一定要先看清题,按运算顺序能先算的就先算出来,然后根据四则运算之间的关系求出方程的解。
(3)做“练一练”第x题。
让学生列出方程。指名口答方程,老师板书。提问列方程的等量关系是什么。
四、课堂小结
今天复习了哪些知识?你进一步明确了什么内容?
五、布置作业
课堂作业;完成“练一练”第x题解方程;练习第x题,第x题后x题,第x题。
家庭作业;练习第x题前x题、第x题。
教学内容:
第10页例6及后做一做、练习二1—3题。
教学目标
1.知识与技能:掌握用“四舍五入法”取积的近似数。
2.过程与方法:让学生应用迁移的方法来求积的近似数。
3.情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。
教学重点
学生能用“四舍五入法”取积的近似数。
教学难点
学生能根据实际需要正确求积的.近似数。
教学过程:
一、复习.
1、口算:略
2、把下面各数精确到百分位。
0.256≈ 12.889≈ 40.00001≈
二、新授
1.教学教材第10页例题6.
(1)出示例题6:
(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?
(3)生尝试练习。
(4)抽生板演:0.049×45≈2.2(亿个)
0.049
× 45
245
196
2.205
(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)
①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)
②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)
(6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。
三、练习
1、完成第10页“做一做”。
生完成在练习本上,抽生板演,并说出四舍五入的方法。
2、课堂作业:第13页练习二1、2、3题。
教学内容:
教材第27~28页
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环
小数的简便记法。
2、理解有限小数,无限小数的意义,扩展数的范围。
3、培养学生抽象概括能力,及敢于质疑和独立思考的习惯。
教学重点:
理解循环小数的意义
教学难点:
判断商是否为循环小数的'方法
教学过程:
一、创设情景,引入课题
师:同学们,请注意听下面的声音。
师:同学们,如果老师一直播放下去会怎么样?
生:永远放不完。
随学生的回答板书:放不完。
师:同学们说得好,那么为什么会放不完呢?
生:因为都是不断重复那几句话。
板书:不断重复
师:我们生活当中有这样的现象吗
生:有啊,白天到黑夜,春夏秋冬,日出日落,星期一到星期天,一年十二个月等等
师:说得非常好,像这样依次不断重复出现的现象我们就叫它循环。那么在我们的数学王国中有没有这样的循环现象呢。今天我们要来认识一位新的朋友—循环小数。
多媒体课件出示第27页王鹏赛跑的情景图。引导学生观察图意后,列出算式400÷75。
师:请同学们用竖式计算这个算式,看计算过程中你能发现什么?
生:可能发现。
1、继续除下去,永远也除不完。
2、商的小数部分总是重复出现“3”。
师:那同学们知道为什么商的小数部分不断重复3吗
师:我们一起来看看(在黑板上写出计算过程,边写边说)继续除看看,无论除到哪一位,当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。
师:后面还有很多个3,那么我们应该怎么表示商呢?我们这时就可以用个省略符号表示它了。下面同学们再试着再列竖式算一道题目,看跟这道有什么区别。
生:商是从小数点第二位开始出现的,并且重复出现两个数字。
二、认识循环小数
(出示课件,像这样的数叫做循环小数)
引出循环小数的定义。(在黑板上板出还可以这样简写)
师:请同学们计算再15÷16和1.5÷7。
学生计算后,问:从中你发现什么?
生:15÷16=0.9375,1.5÷7=0.2142857?
师:像这样两个数相除,如果得不到整数商,所得的商可能会有两种情况,你知道是哪两种情况吗?
引导学生说出一种是继续除下去能够除尽,像15÷16一样;另一种情况是继续除下去,永远也除不完,像1.5÷7一样。
师:能够除尽的商的小数部分的位数是有限的,我们把它叫做有限小数;永远也除不完的商的小数部分是无限的,我们把它叫做无限小数。循环小数的小数位数是有限的还是无限的?
生:无限的。
师:所以循环小数是无限小数。
四、课堂练习
五、课堂小结