波函数:wave function
波函数是量子力学中用来描述粒子的德布罗意波的函数。
为了定量地描述微观粒子的状态,量子力学中引入了波函数,并用ψ表示。一般来讲,波函数是空间和时间的函数,并且是复函数,即ψ=ψ(x,y,z,t)。将爱因斯坦的“鬼场”和光子存在的概率之间的关系加以推广,玻恩假定 就是粒子的概率密度,即在时刻t,在点(x,y,z)附近单位体积内发现粒子的概率。波函数ψ因此就称为概率幅。
电子在屏上各个位置出现的概率密度并不是常数:有些地方出现的概率大,即出现干涉图样中的“亮条纹”;而有些地方出现的概率却可以为零,没有电子到达,显示“暗条纹”。
由此可见,在电子双缝干涉实验中观察到的,是大量事件所显示出来的一种概率分布,这正是玻恩对波函数物理意义的解释,即波函数模的平方对应于微观粒子在某处出现的概率密度(probability density):
即是说,微观粒子在各处出现的概率密度才具有明显的物理意义。
据此可以认为波函数所代表的是一种概率的波动。这虽然只是人们目前对物质波所能做出的一种理解,然而波函数概念的形成正是量子力学完全摆脱经典观念、走向成熟的标志;波函数和概率密度,是构成量子力学理论的最基本的概念。
概率幅满足于迭加原理,即:ψ12=ψ1+ψ2(1.26) 相应的概率分布为(1.27)