解换底公式为:
loga(b)=logc(b)/logc(a)(c>0,c≠1)
推导过程
令loga(b)=t................................(1)
即a^t=b
两边取以c(c>0,c≠1)的对数
即logc(a^t)=logc(b)
即 t logc(a)=logc(b)
故由a≠1,即 logc(a)≠0
即t=logc(b)/ logc(a)..............(2)
由(1)与(2)知
loga(b)=logc(b)/logc(a)。
如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数